مسایل مکانیابی هاب دومرحلهای تصادفی تحت سناریو با رویکرد الگوریتمهای هوش مصنوعی
چکیده
هدف: این مقاله با هدف ارایه یک چارچوب نوآورانه برای مسایل مکانیابی هاب تحت شرایط عدم قطعیت، با تلفیق هوش مصنوعی و بهینهسازی تصادفی انجام شد.
روششناسی پژوهش: الگوریتمهای خوشهبندی K-medoids و DBSCAN برای تولید سناریوهای مکانیابی بالقوه هاب ادغام شدند. این سناریوها سپس در یک مدل برنامهریزی تصادفی دومرحلهای که با استفاده از CPLEX در GAMS حل شد، گنجانده شدند.
یافتهها: نتایج نشان داد که هزینههای ثابت بالاتر، تعداد هابهای استقرار یافته را کاهش میدهد، در حالی که ضرایب تخفیف افزایشیافته بین هابها منجر به کاهش هابهای فعال یا افزایش هزینه کل میشود.
اصالت/ارزش افزوده علمی: مشارکت اصلی این مطالعه، ترکیب نوآورانه خوشهبندی هوش مصنوعی برای تولید سناریو با برنامهریزی تصادفی دومرحلهای است که رویکردی مقاوم برای مکانیابی هاب تحت شرایط عدم قطعیت ارایه میدهد.
کلمات کلیدی:
مکانیابی هاب، مسایل دومرحلهای تصادفی، الگوریتمهای خوشهبندی، هوش مصنوعیمراجع
- [1] Alumur, S. A., Campbell, J. F., Contreras, I., Kara, B. Y., Marianov, V., & O’Kelly, M. E. (2021). Perspectives on modeling hub location problems. European journal of operational research, 291(1), 1-17. https://doi.org/10.1016/j.ejor.2020.09.039
- [2] Farahani Zanjirani, R., Hekmatfar, M., Arabani Boloori, A., & Nikbakhsh, E. (2013). Hub location problems: A review of models, classification, solution techniques, and applications. Computers and industrial engineering, 64(4), 1096–1109. https://doi.org/10.1016/j.cie.2013.01.012
- [3] Hakimi, S. L. (1964). Optimum locations of switching centers and the absolute centers and medians of a graph. Operations research, 12(3), 450–459. https://doi.org/10.1287/opre.12.3.450
- [4] Toh, R., & Higgins, R. (1985). The impact of hub and spoke network centralization and route monopoly on domestic airline profitability. Transportation journal, 24(4), 16–27. https://www.jstor.org/stable/20712826
- [5] Campbell, J. F. (1996). Hub location and the p-hub median problem. Operations research, 44(6), 923–935. https://doi.org/10.1287/opre.44.6.923
- [6] O’Kelly, M. E. (1986). Location of interacting hub facilities. Transportation science, 20(2), 92–106. https://doi.org/10.1287/trsc.20.2.92
- [7] O’Kelly, M. E., & Lao, Y. (1991). Mode choice in a hub‐and‐spoke network: A zero‐one linear programming approach. Geographical analysis, 23(4), 283–297. https://doi.org/10.1111/j.1538-4632.1991.tb00240.x
- [8] O’kelly, M. E. (1987). A quadratic integer program for the location of interacting hub facilities. European journal of operational research, 32(3), 393–404. https://doi.org/10.1016/S0377-2217(87)80007-3
- [9] Alumur, S., & Kara, B. Y. (2008). Network hub location problems: The state of the art. European journal of operational research, 190(1), 1–21. https://doi.org/10.1016/j.ejor.2007.06.008
- [10] Campbell, J. F. (1992). Location and allocation for distribution systems with transshipments and transportion economies of scale. Annals of operations research, 40(1), 77–99. https://doi.org/10.1007/BF02060471
- [11] Alumur, S. A., Nickel, S., & Saldanha-da-Gama, F. (2012). Hub location under uncertainty. Transportation research part b: methodological, 46(4), 529–543. https://doi.org/10.1016/j.trb.2011.11.006
- [12] Ernst, A. T., & Krishnamoorthy, M. (1996). Efficient algorithms for the uncapacitated single allocation p-hub median problem. Location science, 4(3), 139–154. https://doi.org/10.1016/S0966-8349(96)00011-3
- [13] Korani, E., & Eydi, A. (2021). Bi-level programming model and KKT penalty function solution approach for reliable hub location problem. Expert systems with applications, 184, 115505. https://doi.org/10.1016/j.eswa.2021.115505
- [14] Esmizadeh, Y., Bashiri, M., Jahani, H., & Almada-Lobo, B. (2021). Cold chain management in hierarchical operational hub networks. Transportation research part E: Logistics and transportation review, 147, 102202. https://doi.org/10.1016/j.tre.2020.102202
- [15] Huang, L., Tan, Y., & Guan, X. (2022). Hub-and-spoke network design for container shipping considering disruption and congestion in the post COVID-19 era. Ocean & coastal management, 225, 106230. https://doi.org/10.1016/j.ocecoaman.2022.106230
- [16] Sener, N., & Feyzioglu, O. (2023). Multiple allocation hub covering flow problem under uncertainty. Annals of operations research, 320(2), 975–997. https://doi.org/10.1007/s10479-022-04553-2
- [17] Maliki, F., Souier, M., Dahane, M., & Ben Abdelaziz, F. (2025). A multi-objective optimization model for a multi-period mobile facility location problem with environmental and disruption considerations. Annals of operations research, 346(2), 1445–1470. https://doi.org/10.1007/s10479-022-04945-4
- [18] Ertem, M. A., Akdogan, M. A., & Kahya, M. (2022). Intermodal transportation in humanitarian logistics with an application to a Turkish network using retrospective analysis. International journal of disaster risk reduction, 72, 102828. https://doi.org/10.1016/j.ijdrr.2022.102828
- [19] Sangaiah, A. K., & Khanduzi, R. (2022). Tabu search with simulated annealing for solving a location–protection–disruption in hub network. Applied soft computing, 114, 108056. https://doi.org/10.1016/j.asoc.2021.108056
- [20] Lu, H., Zhang, X., & Yang, S. (2019). A learning-based iterative method for solving vehicle routing problems [presentation]. International conference on learning representations. https://openreview.net/forum?id=BJe1334YDH
- [21] Gaar, E., & Sinnl, M. (2021). Experiments with graph convolutional networks for solving the vertex $p$-center problem. http://arxiv.org/abs/2106.00357
- [22] Mokhtarzadeh, M., Tavakkoli-Moghaddam, R., Triki, C., & Rahimi, Y. (2021). A hybrid of clustering and meta-heuristic algorithms to solve a p-mobile hub location–allocation problem with the depreciation cost of hub facilities. Engineering applications of artificial intelligence, 98, 104121. https://doi.org/10.1016/j.engappai.2020.104121
- [23] Rabbani, M., Mokhtarzadeh, M., & Manavizadeh, N. (2021). A constraint programming approach and a hybrid of genetic and K-means algorithms to solve the p-hub location-allocation problems. International journal of management science and engineering management, 16(2), 123–133. https://doi.org/10.1080/17509653.2021.1905096
